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Abstract

The phenomenological theory of air-bubble plumes in water is developed taking into account a
correction factor k representing the in¯uence from vertical turbulence. The method is developed both for
plane plumes, and for axisymmetric plumes. Central ingredients in this theory are the use of the kinetic
energy equation, together with the requirement that the most dominant Reynolds stress component be
self-preserved. The desirability of taking turbulence stresses into account has been emphasized, by earlier
workers in the ®eld. We compare our theory with experiments carried out at one single depth in the
two-dimensional case, and at three di�erent depths in the axisymmetric case. There are two input
parameters that are central in the theory: in addition to the parameter k, de®ned in standard notation as
k= u

02
z /u

2
z, there is also an integral parameter, called I. These two parameters are interrelated. All the

examined experiments can be described with reasonable accuracy if proper adjustments are made of the
values of k and I. The necessary adjustments are usually slight; this behaviour supporting the usefulness
of the present kind of theory. Our comparisons indicate that no de®nite value of k can usually be
assigned in advance to an experimental situation without knowing its turbulence-generating geometry in
detail. Especially the geometry of the source seems to be important in this context. Some of the cases
correspond to kI0.08; then the turbulence correction is small. Some of the experiments are, however,
best described by taking k as large as 0.3. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An important objective in engineering is the ability of predicting the gross behaviour (the
distribution of ¯uid ¯ow, and of air content) in an air-bubble plume, by means of relatively
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simple phenomenological theory. Basically, there are two di�erent versions of an air-bubble
plume: either, the plume is approximately plane, created by air emanating from ori®ces in a
horizontal pipeline (under those circumstances one often calls the plume a bubble screen). Or,
the plume is axisymmetric, created from a single source (ideally a point source).
In engineering practice the utility of air-bubble plumes is many-facetted. Let us write down

the following brief list of applications (cf. also the discussion in Brevik and Killie, 1996): (1)
production of opposing surface currents strong enough to protect harbour areas from damage
under storm conditions; (2) maintenance of ice-free conditions, as well as good mixing
conditions, in fjords; (3) destrati®cation of drinking reservoirs (Schladow, 1992); (4) reduction
of shock pressures generated by underwater explosions; (5) protection against the spreading of
oil slicks on a water surface; (6) vertical mixing and aeration (mass transfer) in strati®ed
reservoirs; and ®nally (7) `gas lift' applications ranging from seabed mining to ¯ow
enhancement in oil wells. The condition is here that the bubbles are con®ned in a tube or a
pipe (Fannelùp, 1994).
The literature on air-bubble plumes is diverse, naturally dependent on which weight is laid

on the di�erent aspects of the problem. In particular, if chemical reactions are allowed to
occur, considerable complications in the formalism have to be dealt with. References to several
review papers and doctoral theses were given in Brevik and Killie (1996), and will not be
repeated here in full. Su�ce it to mention, though, the paper of Wijngaarden (1972), and the
books of Clift et al. (1978) and of Brennen (1995). We refer also to two quite new works.
Mazumdar et al. (1996) present a mathematical model in which the width of the plume is taken
to grow exponentially with vertical distance measured from exit level, and Engebretsen et al.
(1997) present experimental large scale results with underwater gas releases, both with an
instantaneously started source and with a continuous source. What we shall focus attention on,
are the fundamental methods of dealing with the macroscopic plume, assuming that it can be
considered as a continuous ¯uid of slightly varying density r. Chemical reactions will be
neglected. There are basically two kinds of approach. As always, one has at one's disposal the
continuity equation, and the balance equation for momentum. The di�erence between the two
approaches consists in how one decides to close the governing set of equations:

1. The most common approach is to choose as closing condition the rate of entrainment to be
proportional to the centerline velocity. This approach is followed, for instance, by Ditmars
and Cederwall (1974) and Wilkinson (1979). The idea is based upon analogy with the theory
of the thermal one-phase buoyant plume (cf. Morton, 1971). The analogy was exploited
already by Taylor (1955), who based his considerations upon earlier work of Schmidt
(1941).

2. The second kind of approach is to make use of the balance equation for kinetic energy,
together with the condition that the most dominant Reynolds stress component be self-
preserved. This method was introduced some years ago by one of us (Brevik, 1977) in
connection with plane plume theory, and compared with the large scale experiments of
Kobus (1968, 1970, 1972). The theory contains three input parameters: (i) a nondimensional
constant I plane, de®ned by Eq. (14) below, whose value has to be determined from
experiment; (ii) the ratio l between the standard deviations for mass of air and vertical
mean water density; and (iii) the relative (slip) velocity u rel between bubbles and ambient
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water. Reasonable agreement between theory and experiment was obtained with the values
I plane=0.13, l=0.2, and u rel=0.40 m/s. The drawback here is that the input slip velocity
has to be so high (the single-bubble terminal velocity lying only between 20 and 30 cm/s
when the bubble diameters are between 1 mm and 1 cm). However, application of the same
method to the case of axisymmetric ¯ow (Brevik and Killie, 1996) showed surprisingly good
agreement on the basis of quite reasonable input parameters: under moderate large-scale
circumstances, we chose I(0I axi)=0.12 which is practically the same as above; l=0.5
which is a reasonable mean derived from published values in the literature, and ®nally
u rel=0.30 m/s which is quite acceptable physically. These values were found to be more or
less universal (i.e. independent of height and of experimental factors), although a moderate
dependence on the scale was observed. At large scales, such as in the D=50 m experiment
of Milgram (1983), the optimum value of I was thus found to increase to about 0.2.
(Further discussion on the values of u rel is given in Section 5.)

This brings us to the motivation for the present paper. The above kinetic-energy approach
neglected the in¯uence from turbulence in the governing equations. The question is, in
particular, whether the vertical correlation u

02
z is really negligible. Although the reasonably

good agreement between kinetic-energy theory and experiment (in particular in the
axisymmetric case) indicates that our basic ideas are sound, we do not know beforehand that
u
02
z is really negligible. In fact, Goossens (1979), in his doctoral thesis, used data from his
observations to estimate how large a part of the vertical momentum ¯ux was related to the
term u

02
z . He arrived at a value of about 30%, thus considerably higher than the correction of

about 10% which is known to be present in a single phase free jet. The need for undertaking a
re®ned version of our kinetic-energy theory is thus obvious. In the following we will consider
both the plane and the axisymmetric ¯ow. We shall take into account the correction from
vertical turbulence in the governing equations in a very crude way, namely by taking the ratio
between the vertical turbulent kinetic energy and the vertical mean kinetic energy to be a
constant, independent of position:

k � u
02
z �z;x�
�u2z�z; x�

� constant: �1�

The formula is written for the case of a plane plume; for an axisymmetric plume the horizontal
coordinate x is to be replaced by the radius r in cylindrical coordinates.
Although the present paper is devoted mainly to engineering applications, it is worthwhile

bearing in mind the following basic characteristics of the problem (cf. also the discussion in
Brevik and Killie 1996). As one can infer from the experimental reports, the equivalent bubble
diameters de are lying between 1 mm and 1 cm. Assuming that most bubbles are actually lying
in a narrower region, 2 mmIdeI5 mm, we ®nd that the EoÈ tvoÈ s number Eo= gDrd 2

e/s lies in
the region 0.5IEoI4. Here Dr is the water±air mass di�erence and s the surface tension.
The important point is that the bubbles are in the intermediate regime, characterized by
oscillatory bubble trajectories and ellipsoidal bubble shapes (cf. Clift et al., 1978). The EoÈ tvoÈ s
number is too high to permit purely spherical symmetry. Assuming the slip velocity u rel to be
0.30 m/s, the Reynolds number Re rel for the bubbles in the plume, relative to the ambient
water, is for 2 mmIdeI5 mm expected to lie in the region 600IRe relI1500.
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2. Plane plume

The starting point is the mean vertical component of the momentum balance equation of the
air±water mixture whose density is r(z, x) ( j= z, x):

@ �pd
@z
� rw

@

@xj
� �uz �uj � u0zu

0
j� � �mg

rw
ra
: �2�

Here rw is the density of ambient water, ra the density of air within the bubbles, m the mass of
air contained per unit volume of the ¯uid, and pd=pÿ rwg(Dÿ z) ( p denoting the total
pressure and D the water depth) the dynamic pressure. We neglect pd, which is a small quantity
¯uctuating around zero, and integrate (2) over all x and over z from z=0 (the actual position
of the source) to an arbitrary z. ThenZ 1

ÿ1
� �u2z � u

02
z �dx � g

Z z

0

dz

ra

Z 1
ÿ1

�m dx: �3�

As before (Brevik and Killie, 1996), we assume that the lateral variations of uz and m are given
by Gaussian distributions:

�uz�z;x� � uc�z�exp
�
ÿ x2

2s2�z�
�
; �4�

�m�z; x� � mc�z�exp
�
ÿ x2

2l2s2�z�

�
; �5�

where uc, mc are mean centerline quantities, and s the standard deviation for the velocity ®eld.
One may ask: what are the physical reasons for assuming the Gaussian forms in (4) and (5)?

The main reason comes from the experimental side: there are measurements showing that the
Gaussian distributions are followed with great accuracy. On the theoretical side, it is of interest
to note that the Gaussian forms are closely related to Reichardt's theory of turbulent jets. (A
good exposition on this kind of theory can be found in the book of Abramovich, 1963, Section
2.10.) Also in the case of turbulent jets, it turns out that the Gaussian forms followed from
Reichardt's theory are in good agreement with measurements.
Another useful information inferred from the experiments is that the quantity l, the ratio

between the standard deviations for air mass and ¯uid velocity, may be set equal to a constant.
Use of (1) then leads to

u
02
z �z; x� � ku2c�z�eÿ

x2

s2�z�: �6�
Assuming isothermal expansion of the air, we have ra(z)= ra0(D*ÿ z)/P, where ra0 is the
density of air at atmospheric pressure and D*= D+ P (P denotes the atmospheric pressure
as a head of water). From (3) we now get

�1� k�u2cs �
���
2
p

gPl
ra0

Z z

0

mcs

D* ÿ z
dz; �7�
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which can be processed further by using the conservation equation for the rate of air mass

emitted per meter:

Qm �
Z 1
ÿ1

�m� �uz � urel�dx: �8�

The ®nal momentum equation can then be expressed in the form

�1� k� d
dz
�u2c�z�s�z�� �

�
1� l2

p

�1=2
gQ0P

D* ÿ z

1

uc�z� � �1� l2�1=2urel
: �9�

Here Q 0=Qm/r a0 is the volume of air at atmospheric pressure corresponding to the mass Qm.

The balance equation for kinetic energy is derived in an analogous way. The starting point is

eqn (2), multiplied by uz. We neglect pd, take into account the continuity equation @juj=0, and

observe the equality @j�u0zu0j�= k@zu
2
z+ @x�u0zu0j�. Then

1

2

�
1� 4k

3

�
@ �u3z
@z
� @

@x

�
1

2
�u2z �ux

�
� �uz

@

@x
�u0zu0x� �

�m �uzg

ra
: �10�

We integrate this equation over the same volume as above, take into account the boundary

condition u2zux40 for x421 in accordance with (4), and perform a partial integration with

respect to x in the last term to the left:

1

2

�
1� 4k

3

�Z 1
ÿ1

�u3z dxÿ
Z z

0

dz

Z 1
ÿ1

@ �uz
@x
�u0zu0x�dx � g

Z
�m �uz
ra

dzdx: �11�

We di�erentiate this equation with respect to z, and impose the self-preservation condition for

the cross-correlation term:

u0zu0x � u2c f�Z�: �12�
Here f is an arbitrary function of the parameter Z= x/s(z). Again, we are here reasoning

along similar lines as in the case of Reichardt's theory of turbulent jets; cf. (4) and (5) above.

The ultimate justi®cation of (12) has to be given by experimental evidence. We thus obtain as

kinetic energy equation�
1� 4k

3

�
d

dz
�u3c�z�s�z�� �

�
6

p

�1=2
gQ0P

D* ÿ z

uc�z�
uc�z� � �1� l2�1=2urel

ÿ Iplaneu
3
c�z�; �13�

where I plane, de®ned as

Iplane �
�
24

p

�1=2 Z 1
0

Z f�Z�eÿZ2=2 dZ; �14�

is a nondimensional constant whose value has to be determined from experimental

informations. If k=0, agreement is found with Brevik and Killie (1996).
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3. Axisymmetric plume

We introduce cylindric coordinates r, y, z, and let at ®rst the origin z=0 be located at the

bottom of the tank, i.e. at the (approximate point) source. As the method of derivation is

analogous to that of the preceding section, and also similar to the treatment in Brevik and

Killie (1996), we need only be brief. As for the momentum balance, setting u y=0 and

neglecting pd, we have as starting point the equation

@ �u2z
@z
� 1

r

@

@r
�r �uz �ur� � 1

r

@

@r
�ru0zu0r� �

�mg

ra
; �15�

which is integrated over a cylinder of height z and in®nite width. We observe the boundary

conditions at r=0 and r 41, impose Gaussian distributions for uz and m as given by (4) and

(5) with the substitutions x 4 r, and take into account the conservation equation for the rate

of air mass:

Qm � 2p
�1
0

�m� �uz � urel�r dr: �16�

We obtain the momentum balance as

�1� k� d
dz
�u2c�z�s2�z�� �

1� l2

p
gQ0P

D* ÿ z

1

uz�z� � �1� l2�urel
; �17�

where Q 0=Qm/ra0 as before.

As for the kinetic energy balance, we start from the mean equation

@

@z

�
1

2
�u3z

�
� 1

r

@

@r

�
1

2
r �u2z �ur

�
� �uz

r

@

@r
�ru0zu0r� �

�m �uzg

ra
; �18�

which is obtained by a multiplication of (15) with uz, and use of the mean continuity equation

@r(rur)+ r@zuz=0. We integrate over the same volume as before, insert the relation u 02z =ku 2
c

exp(ÿr 2/s 2) which is analogous to (6), and require the self-preservation property to hold for

the cross correlation term:

u0zu0r � u2cg�Z�; Z � r=s�z�: �19�
Here g(Z) is, in analogy to f(Z) in (12), an unspeci®ed function of Z. As before, the ultimate

justi®cation of (19) has to come from a comparison with experiments. Some calculation now

leads to the kinetic energy equation�
1� 4k

3

�
d

dz
�u3c�z�s2�z�� �

3gQ0P

p�D* ÿ z�
uc�z�

uc�z� � �1� l2�urel
ÿ Iaxiu

3
c�z�s�z�: �20�

Here I axi is de®ned as the constant
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Iaxi � 6

�1
0

Z2g�Z�eÿZ2=2 dZ: �21�

Again, if k=0, agreement is obtained with Brevik and Killie (1996).

4. Solution of the equations

4.1. Nondimensional form

We express the governing equations in nondimensional form, and solve the problem as an
initial value problem. Because of the peculiar initial value conditions (the virtual source being
located below the physical source) the integration of the equations is not quite trivial. We ®rst
introduce f as a nondimensional centerline velocity and z as a nondimensional height:

f � uc
urel

; z � z

D*
�22�

(f was called s in Brevik and Killie, 1996).
In the two-dimensional case we represent the standard deviation by the nondimensional

quantity

w �
���
p
p

urelu
2
cs

gQ0P
: �23�

The momentum Eq. (9) can now be written as

�1� k�dw
dz
� 1

1ÿ z
�1� l2�1=2

f� �1� l2�1=2 ; �24�

whereas the energy Eq. (13), after combination with (24), can be written as�
1� 4k

3

�
w
df
dz
�

���
6
p ÿ �1� 4k=3��1� l2�1=2

1ÿ z
f

f� �1� l2�1=2 ÿ Gplanef
3: �25�

Here G plane is a new nondimensional constant, de®ned as

Gplane �
���
p
p

D*

gQ0P
Iplaneu

3
rel: �26�

Eqs. (24) and (25) form a closed set of equations, which can be integrated numerically.
Let us treat the axisymmetric case in the same manner. We now represent the standard

deviation by the nondimensional quantity

u � purelu2cs
2

gQ0P
: �27�

The momentum Eq. (17) becomes
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�1� k�du
dz
� 1

1ÿ z
1� l2

f� 1� l2
; �28�

and the energy Eq. (20), after combination with (28), becomes�
1� 4k

3

�
df
dz
� 3ÿ �1� 4k=3��1� l2�

1ÿ z
f

�f� 1� l2�uÿ Gaxi
f3���
u
p : �29�

Here Gaxi is de®ned as the constant

Gaxi �
�

pu3rel
gQ0P

�1=2

D*Iaxi: �30�

4.2. Initial conditions

Close to the real source lying at z=0 the properties of the ¯ow have to be strongly
dependent on the local geometry. Universality of the ¯ow is not expected to occur until a
certain distance, usually somewhat less than 1 m, has been passed. Kobus (1968, 1970, 1972)
and others have shown that it is convenient to continue analytically the ¯ow to the region
z<0 where it corresponds to the ¯ow from a virtual source at z= ÿ z0. Under moderate large
scale circumstances, Kobus adopted the value z0=0.8 m. In the present work, we shall
investigate some di�erent values of z0, in the interval 0.2 mE z0E0.9 m.
It is natural to inquire here whether it is possible to express the virtual depth on a general,

nondimensional form. This would have been desirable, but seems according to our numerical
trials not to be feasible. Most likely, this behaviour is related to our lack of detailed knowledge
about the geometric form and magnitude of the source.
As it is numerically most convenient to start the solution procedure from the origin, we

make a translation of the vertical coordinate:

z4z� z0; z4z� z0; D*4D� P� z0; �31�
whereby the virtual origin will be at z=0.

4.3. Line source

The initial conditions are

w�0� � 0;
@f
@z

����
z�0
� 0; �32�

where the last equality is taken over by analogy with the two-dimensional thermal single phase
plume. Use of this equality in (25) yields a cubic equation for f(0):

I. Brevik, R. Kluge / International Journal of Multiphase Flow 25 (1999) 87±10894



f3�0� � �1� l2�1=2f2�0� ÿ
���
6
p ÿ �1� 4k=3��1� l2�1=2

�1� z0�Gplane
� 0 �33�

(z0= z0/D*). Using MATLAB, for instance, this equation is easily solved by iteration.

The set of two-dimensional governing equations, (24) and (25), can now be integrated from

the origin upwards. To avoid singularities we cannot start exactly at z=0. In practice,

z= zs=0.0001 was found to be a convenient starting point; no disturbing sensitivity with

respect to the choice for zs was observed.
For this procedure to be correct, the source must strictly speaking be an ideal line source. In

practice this is not so; the distance between the ori®ces in a pipeline is typically about 10 cm.

Consequently, it becomes natural to imagine that the real ¯ow ®eld above a pipeline is some

combination of three- and two-dimensional ¯ow: at ®rst, just above the ori®ces it is natural to

take the ¯ow to be essentially three-dimensional (axisymmetric). Thereafter, at the height where

the ori®ce-dependent ¯ows begin to overlap, a transition takes place to an essentially two-

dimensional plume.

The situation is sketched in Fig. 1. We actually used this plume picture to introduce a novel

method for treating the initial conditions: The three-dimensional model was assumed up to a

height z= z 0 given by the condition 2b(z 0)=ori®ce spacing, b meaning the half-width
���
2
p

s.
Thus, z 0, the overlap height, corresponds to the conditions

Fig. 1. Sketch of the transitional region wherein the plume changes from a three-dimensional to a two-dimensional

form.
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uc�z0� jaxi� uc�z0� jplane; s�z0� jaxi� s�z0� jplane : �34�
At larger heights, the two-dimensional model was assumed.

4.4. Point source

The initial conditions are

u�0� � 0;
@f
@z

����
z�0
� 0; �35�

in analogy with (32). However, the ®rst equality in (35) cannot be used in the numerical
integration of (28) and (29) since it would lead to a singularity in (29). We, therefore, develop
simpli®ed versions of (28) and (29) which hold for small z and which can be solved
analytically. It is recognized quite universally (cf. Haaland, 1979; Lemckert and Imberger,
1993) that ucAz ÿ1/3 for small z. Accordingly, we can assume uc>>u rel, implying f>>1, for
small z. Eqs. (28) and (29) can then be approximated by

�1� k�du
dz
� 1� l2

1ÿ z
1

f
; �36�

�
1� 4k

3

�
df
dz
� 3ÿ �1� 4k=3��1� l2�

�1ÿ z�u ÿ Gaxi
f2���
u
p : �37�

To lowest order in z we can here put z=0 in the denominators, and so derive the following
power solutions:

f �
� ���

3
p

2Gaxi

4�1� k� ÿ �1� 4k=3�2�1ÿ l2�
�1� k�1=2�1� l2�1=2

�2=3
zÿ1=3; �38�

u �
�

3Gaxi

4�1� k�
�1� l2�2

4�1� k� ÿ �1� 4k=3�2�1� l2�

�2=3
z4=3: �39�

As expected, (38) shows that ucA z ÿ1/3 for small z. If k=0, (38) and (39) agree with Brevik
and Killie (1996).
The initial values for the numerical integration procedure were calculated analytically from

(38) and (39). A nondimensional height of z= zs=0.001 was found to be appropriate. All our
integrations were performed using MATLAB.

5. Comparison with experiments

The above formalism permits us to calculate uc and s if all parameters are known. Among
all parameters only Q 0, D, P and for a line source the ori®ce spacing, are measurable directly.
There are four remaining parameters, namely l, k, I and u rel. Consider the ®rst three of these:

I. Brevik, R. Kluge / International Journal of Multiphase Flow 25 (1999) 87±10896



if the present kind of theory is to be useful, it must be possible to assign numerical values to
them that are independent of z. They are not universal numbers, however, since they are likely
to depend weakly on the experimental factors. That is, we expect the parameter set (l, k, I ) to
depend weakly on Q 0, D, and the bubble size which in turn is closely related to the geometric
form of the source. In practice, the information that we are having at our disposal is that
coming from measurements of ¯uid velocities and plume widths.
It will actually turn out, as a result of the comparisons between theory and experiment, that

the expected weak dependence of the parameter set (l, k, I ) upon the external scale variables is
con®rmed. As mentioned before, our main objective in the present paper is to examine the
in¯uence from the parameter k, as de®ned by (1) or (6) in the plane case and analogous
equations (x 4 r) in the axisymmetric case.
Consider then the fourth parameter listed above, namely the slip velocity u rel. This quantity

plays a somewhat special role as it is not simply a freely adjustable parameter; the rise velocity
for a single bubble in still water is after all known experimentally. (See, for instance, the book
of Clift et al., 1978, or the earlier extensive experimental work of Siemens, 1954.) If the
bubbles have equivalent diameters de lying between 2 and 5 mm, then the single bubble rise
velocity lies roughly between 10 and 25 cm/s. However, we cannot in the present problem
simply adopt for u rel the rise velocities for single bubbles, all the time the bubbles are rising
within a plume. It is natural to assume that u rel is somewhat larger than in the single bubble
case. As discussed in the Introduction, the value u rel=0.40 m/s used in Brevik (1977) was
somewhat large; this point was discussed extensively by Goossens (1979) who argued that u rel

ought to be less, although still larger than the single bubble rise velocity in still water. A value
of

urel � 0:3 m=s; �40�
as mentioned earlier, appears to be reasonable and will be assumed in the following
comparisons. This value was adopted in Brevik and Killie (1996) and is in good agreement, in
addition to Goossens (1979), also with Haaland (1979) and Ditmars and Cederwall (1974).
We thus see that the slip velocity e�ectively plays the role of an input parameter in the

plume, after all. We have put u rel=constant; this is of course only an approximation which
re¯ects the fact that the complex air-water interaction is not amenable to a simple analytic
treatment. From a fundamental viewpoint, u rel is a local slip velocity. Higher values of u rel

might arise if phenomena such as local channeling are at play. Typically, the core region at the
plume centerline may be largely gaseous, thereby reducing the resistance to bubble rise ( cf. the
discussion of Wilkinson, 1979 on this point). But we are ignoring all intricacies of this sort. All
previous workers on plume phenomenology, as far as we are aware, have similarly to us put
the slip velocity equal to a constant.
As for the parameter l, the ratio between the standard deviations for air mass density and

vertical ¯uid velocity, there are diverging opinions in the literature. Values have been used
ranging from l=0.2 (Ditmars and Cederwall, 1974; Brevik, 1977) to l=1 (Goossens, 1979).
The value l=1 implies that there is no motion of water outside the bubble region. This
assumption is perhaps a little extreme. Ditmars and Cederwall chose l=0.2 because this gave
satisfactory agreement with the observations of Kobus (1968). As pointed out by Haaland
(1979), a somewhat larger value of l would result had the authors performed a coordinate
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translation D* 4 D+ P+ z0. Haaland arrived at the value l=0.5 as an optimum. Other
workers, such as Tekeli and Maxwell (1978) and Mazumdar et al. (1996) have used le0.5. On
the whole, it seems that

l � 0:5 �41�
is a reasonable mean value inferred from all the known data. This value was adopted also in
Brevik and Killie (1996). Further discussion on the value of l is given in Section 6, item 5.
Su�ce to say, that lower values of l(<0.5) are unfavourable according to our analysis.
Having determined the input values for u rel and l we now turn to observations in order to

determine the remaining parameters k and I. These parameters turn out to be interrelated,
although only weakly so. If vertical turbulence is unimportant, we will ®nd that k20. If the
turbulence is so strong as claimed by Goossens (1979) (about 30% correction) we will expect
k=0.3 (recall the de®nition (1)). To get a picture of the in¯uence from turbulence we have, in
our numerical solutions, tested three di�erent values of the turbulence parameter: k=0, 0.08
(a typical value for a one-phase plume), and k=0.3.

5.1. Line source

Experiments on the two-dimensional plume are apparently scarce. We will concentrate on
Kobus' careful series of experiments (1968, 1970, 1972). Fig. 2 shows s and uc vs z above

Fig. 2. Line source. Standard deviation s (m) and centerline velocity us (m/s) vs height z (m) above virtual source,

when Q 0=62 cm2/s, D=4.3 m. Full line: k=0, I plane=0.115; broken line: k=0.3, I plane=0.13. l=0.5 in both
cases. Data points from Kobus (1968, 1970, 1972).
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virtual source, when Q o=62 cm2/s, D=4.3 m, calculated for k=0 and for k=0.3 as input.
The ori®ce spacing was 10 cm. In both cases, l=0.5 was chosen. The optimum values of the
parameter I= I plane were in our calculations found to be 0.115 and 0.13, respectively. From
the ®gure it is seen that in this experiment the k=0.3 alternative is de®nitely the best one. This
holds true for the standard deviation as well as for the centerline velocity. That means, in this
experiment the e�ect from vertical turbulence was appreciable.
The case k=0.08 was also investigated (it is not shown here). The results were very near to

those obtained when k=0. This kind of behaviour was actually in all our calculations found
to be quite general: the sensitivity of the formalism with respect to the turbulence was small,
up to k20.08.
As mentioned at the end of Section 4.3, one possible way of handling the initial conditions

for a line source is to assume a three-dimensional model from the virtual source up to a height
z= z 0 determined by the condition that the plane width be equal to the ori®ce spacing (cf.
Eq. (34), and Fig. 1). Fig. 3 shows how the behaviour becomes when Q o=62 cm2/s,
D=4.3 m, if one chooses k=0.3. The standard deviation is seen to be practically unchanged
from Fig. 2, and is in good agreement with the observations. As for the centerline velocity, the
values are also for zi1.5 m practically the same as in Fig. 2, and are in reasonable agreement
with the observations. At lower heights, zI1 m, Fig. 3 shows considerably larger velocity
values than Fig. 2. In this region turbulence e�ects are strong, observational points are lacking,
and a de®nite conclusion about which theoretical prediction is best, cannot at present be
drawn.

Fig. 3. Same input data for Q o and D as in Fig. 2 (choosing k=0.3), but now with initial conditions at height
z= z 0 determined by Eq. (34). Optimum parameter value is I plane=0.13. Data points from Kobus (1968, 1970,
1972).
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Fig. 3, like Fig. 2, assumes that l=0.5. This is the optimum value of l inferred from the
Kobus experiments. (We made additional checks using higher values of l, such as l=0.9, but
found it then necessary to combine this with a very high value of k, k20.6, in order to ®t the
curves. This high value of k is physically unrealistic.)

5.2. Point source

In order to test our axisymmetric model we will consider experiments carried out at four
di�erent water depths. Figs. 4±7 show data points from the experiment of Fannelùp and Sjùen
(1980), in which case D=9.9 m and zo=0.9 m. The range of air expenditures was from
Q o=5000 cm3/s (Fig. 4) to Qo=22 100 cm3/s (Fig. 7). The three di�erent test values for the
parameter k are shown. It is rather remarkable how similar the curves are. As mentioned
above, the two cases k=0 and k=0.08 are almost coincident. The corresponding values of
I axi are practically the same. One should observe, however, that although the k=0.3 curve is
almost coincident with the two other curves in each diagram, the corresponding values of I axi
and l become di�erent. Thus, the increase in l necessary to yield an optimum ®t in the case
k=0.3, is accompanied by a decrease in I axi.
Another point worth noticing is that the obtained values of I plane and I axi are so similar.

The reason for this is related to the particular prefactors that we have chosen when de®ning
I plane and I axi: the expressions (14) and (21) are de®ned such that the last terms in (13) and
(20) become analogous.

Fig. 4. Point source. Standard deviation s (m) and centerline velocity uc (m/s) vs height z (m) above virtual source,

when Q 0=5000 cm3/s, D=9.9 m. Full line: k=0, I axi=0.14, l=0.5; broken line: k=0.08, I axi=0.145, l=0.5;
dotted line: k=0.3, I axi=0.09, l=0.9. Data points from Fannelùp and Sjùen (1980).
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Fig. 5. Same as Fig. 4, but with Q o=10 000 cm3/s. Full line: k=0, I axi=0.16, l=0.5; broken line: k=0.08,
I axi=0.165, l=0.5; dotted line: k=0.3, I axi=0.105, l=0.9. Data points from Fannelùp and Sjùen (1980).

Fig. 6. Same as Fig. 5, but with Q o=15 000 cm3/s. Full line: k=0, I axi=0.16, l=0.5; broken line: k=0.08,
I axi=0.17, l=0.5; dotted line: k=0.3, I axi=0.107, l=0.9. Data points from Fannelùp and Sjùen (1980).
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Fig. 8 shows the results when the theory is compared with one of Kobus' point source
measurements, Q o=1300 cm3/s, D=4.5 m, zo=0.8 m. Again, the tendency is seen to be the
same as above: the curves are almost overlapping, the k=0 and k=0.08 cases correspond to
the same value of l(=0.5) and almost the same values of I axi, whereas the optimum ®tting in
the k=0.3 case yields an increased l and a decreased I axi. The values of I axi are somewhat
lower than those found in the Fannelùp±Sjùen measurements.
Fig. 9 shows a comparison with the experiment of Milgram and Van Houten (1982). Here

Q o=1180 cm3/s, D=3.7 m, zo=0.2 m. In this case, the choice k=0.3 for the turbulence
parameter turns out to be optimal. Moreover, we found l=0.5 to be optimal, for all values of
k. For increasing values of k the values of I axi are seen to increase slightly, from 0.14 (k=0)
to 0.16 (k=0.3).The case Q o=2340 cm3/s was also analysed (not shown here); then I axi was
found to be 0.16 for k=0, increasing to 0.19 for k=0.3. The general conclusion to be made
about the Milgram±Van Houten experiment is that the in¯uence from turbulence seemed in
this case to be strong.
Finally, Figs. 10±12 show comparisons with Milgram's Bugg Spring experiment on deep

water, D=50 m (Milgram, 1983). In this case we put zo=0.9 m. The air discharges were here
large, ranging from Q o=24 000 cm3/s (Fig. 10) to Q o=283 000 cm3/s (Fig. 12). Despite these
extreme conditions, the optimum values of I axi came out quite near to those given above: if we
limit ourselves to the interval from k=0 to k=0.08, we see that I axi lies between 0.123 and
0.13 in Fig. 10, between 0.155 and 0.16 in Fig. 11, and between 0.24 and 0.25 in Fig. 12. As
before, the value k=0.3 for the turbulence parameter corresponds to a lower value of I axi,
combined with a higher l.

Fig. 7. Same as Fig. 6, but with Q o=22 100 cm3/s. Full line: k=0,=0.175, l=0.5; broken line: k=0.08,

I axi=0.19, l=0.5; dotted line: k=0.3, I axi=0.12, l=0.9. Data points from Fannelùp and Sjùen (1980).
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Fig. 8. Point source. Qo=1300 cm3/s, D=4.5 m. Full line: k=0, I axi=0.113, l=0.5; broken line: k=0.08,
I axi=0.12, l=0.5; dotted line: k=0.3, I axi=0.075, l=0.9. Data points from Kobus (1968, 1970, 1972).

Fig. 9. Point source. Q o=1180 cm3/s, D=3.7 m. Full line: k=0, I axi=0.14, l=0.5; broken line: k=0.08,
I axi=0.15, l=0.5; dotted line: k=0.3, I axi=0.16, l=0.5. Data points from Milgram and Van Houten (1982).
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Fig. 10. Point source. Q o=24 000 cm3/s, D=50 m. Full line: k=0, I axi=0.123, l=0.5; broken line: k=0.08,

I axi=0.13, l=0.5; dotted line: k=0.3, I axi=0.075, l=0.9. Data points from Milgram's Bugg Spring experiment
(1983).

Fig. 11. Same as Fig. 10, but with Q o=118 000 cm3/s. Full line: k=0, I axi=0.155, l=0.5; broken line: k=0.08,
I axi=0.16, l=0.5; dotted line: k=0.3, Iaxi=0.10, l=0.9. Data points from Milgram's Bugg Spring experiment

(1983).
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6. Summary and conclusions

We summarize as follows:

(1) Even though the line of approach in the present paper is phenomenological, it is

worthwhile noticing some relationships to basic bubble physics. We ®nd it reasonable to

assume that the major part of the bubbles in real experiments had equivalent diameters de in

the region 2 mmIdeI5 mm. This corresponds to EoÈ tvoÈ s numbers Eo in the region

0.5IEoI4. The bubbles are then in the oscillatory intermediate regime, corresponding to

ellipsoidal shapes. The Reynolds number Re rel, relative to ambient water, lies in the region

600IRe relI1500.

(2) Our main purpose has been to investigate the in¯uence on the ¯ow from the turbulence

parameter k, de®ned by (1) (for the two-dimensional case). The basic method used in

describing the plume is the kinetic energy method, introduced by one of us in the two-

dimensional case some years ago (Brevik, 1977) and generalized to the axisymmetric case in

Brevik and Killie (1996). The method also rests upon the assumption that the most dominant

Reynolds stress component be self-preserved. A central quantity in this kind of theory is the

integral I, de®ned in the two-dimensional case by (14) and in the axisymmetric case by (21).

Our motivation for undertaking the present study was triggered, in particular, by Goossens

(1979), who claimed on the basis of his observations that the turbulence correction might make

up as much as 30% of the total momentum ¯ux. This corresponds to k=0.3. With the

Fig. 12. Same as Fig. 11, but with Q o=283 000 cm3/s. Full line: k=0, I axi=0.24, l=0.5; broken line: k=0.08,
I axi=0.25, l=0.5; dotted line: k=0.3, I axi=0.15, l=0.9. Data points from Milgram's Bugg Spring experiment
(1983).
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turbulence correction included the closed set of equations, in nondimensional form, is given by
(24), (25) in the two-dimensional case and by (28), (29) in the axisymmetric case.
(3) For moderate k, 0< k<0.08 (k=0.08 being typical for a one-phase plume), it turns

out that the correction from turbulence is small. All cases investigated above permit us to
simply overlap the theoretical k=0.08 curve with the k=0 curve, if the optimum value of I is
adjusted accordingly. And the necessary adjustment is very slight; for instance, in Fig. 5, I axi
increases only from 0.16 to 0.165 when k increases from 0 to 0.08.
When k becomes as large as 0.3, somewhat larger di�erences from the k=0 theory are

encountered. One typical example is given by Fig. 2, the two-dimensional experiment of
Kobus: the theoretical curve for uc when k=0.3 is reduced appreciably in relation to the curve
for k=0 and is in better agreement with the data points.
(4) On the basis of the ®gures it is di�cult to draw de®nite conclusions on whether there are

systematic variations of the parameter I with respect to D and Q 0. Consider the axisymmetric
case: From the Milgram±Van Houten experiment in Fig. 9 (D=3.7 m) and the Fannelùp±
Sjùen experiment in Figs. 4±7 (D=9.9 m) one might infer that the values of I axi increase
slowly with increasing values of D and Q 0 (the k=0 case in Fig. 9 yields I axi=0.14 and the
k=0 case in Fig. 7 yields I axi=0.175). However, both the Kobus point source experiment in
Fig. 8 (D=4.5 m) and, in particular, the Milgram experiment in Figs. 10 and 11 (D=50 m)
give values of I axi that are lower than expected (I axiI0.113 and I axi=0.123±0.155,
respectively).
What is the reason for this apparent lack of systematic behaviour? In our previous study

(Brevik and Killie 1996) both the Kobus experiment, and the Milgram experiment, were shown
to ®t the k=0 theory quite well. Is the explanation for the apparent discrepancy with the
Milgram±Van Houten experiment, and the Fannelùp±Sjùen experiment, simply that the degree
of turbulence was higher in the latter two cases? If this conjecture holds true, higher values of
k, and higher values of I axi, in the latter cases become quite natural. One circumstance
supporting this conjecture is that the Kobus experiment, and the Milgram±Van Houten
experiment, were carried out under comparable conditions (D 04 m and Q 0 01200 cm3/s), but
were, nevertheless, found to yield somewhat di�erent values of I axi. Perhaps there were
turbulence e�ects related to di�erences in the geometric magnitude and form of the sourcesÐ
the real sources are, after all, not pure point sources.
(5) Another point worth noting is the choice of optimum value for l. We have, in most

cases, chosen l=0.5. This seems to us to be the optimum value, at least at low turbulence
levels. However, when the turbulence is strong, k=0.3, our calculations show that the
corresponding optimum value of l turns out to be 0.9 in most cases. Restricting ourselves to
the point sources, this kind of behaviour is seen to be followed in all Figs. 4±8 and 10±12. The
only exception is the Milgram±Van Houten experiment, Fig. 9, where the turbulence level
k=0.3 is accompanied by l=0.5. It may, therefore, be that the optimum value of l should be
somewhat higher than 0.5, at least under a restricted class of physical conditions. We made
some numerical trials testing this point, and found a general tendency to be that the parameter
set k=0.3, l=0.9 is adequate in order to describe the moderate-scale experiments discussed in
the present paper, but not the small-scale experiments. On the whole, taking all the
experimental information into account, we will still prefer the value l=0.5. However, if for
some reason there were systematical errors in the Milgram±Van Houten experiment, we would
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be inclined to use l=0.9. The recent paper of Engebretsen et al. (1997) actually also uses
l=0.9.
(6) We give a remark on the handling of the initial conditions when integrating the

governing equations in the two-dimensional case: As discussed in Section 4.3, it may seem
natural physically to make use of the three-dimensional model from the virtual source up to a
height z 0, and the two-dimensional model thereafter [cf. (34)]. Our calculations along these lines
gave as result that the ®nal curves for s and uc came out quite similar to those calculated using
the more simple procedure of Brevik (1977), except for the lower heights, zI1 m. See Figs. 2
and 3. The formalism is thus, in the physically most important part of the plume, insensitive
with respect to minor changes in the initial conditions.
(7) From a practical, engineering viewpoint, one may ask: is it possible, from the

information discussed in this paper, to give simple analytical formulas for the quantities of
main physical interest? Of greatest importance is probably uc(D), the centerline velocity at
(strictly speaking, near to) the free surface. This quantity is essential, not only for the plume,
but also for pneumatic breakwater situations, etc. As we shall see, it is actually possible to give
formulas of this sort, which can be quite useful in the many cases in practice where
requirements about great accuracy are not too strict.
Consider ®rst the plane case. This situation has been analysed earlier (Bulson, 1961, 1963;

Brevik, 1977). The analysis is based upon comparison with Bulson's large scale plume
experiments. On dimensional grounds one may write

uc�D� � Kplane�gQo�1=3�P=D*�1=3; �42�
where Kplane is a nondimensional quantity (here isothermal change of the air has been
assumed). It turns out that it is reasonably accurate to put Kplane equal to a constant. In our
earlier paper (Brevik, 1977), we arrived at the value Kplane=1.73 as an optimum (actually
Bulson gave a lower value, Kplane=1.46, but this may be due to the positioning of his test
equipment). Compared to Fig. 2 in the present paper, we ®nd that this value ®ts reasonably
well. Perhaps Kplane should be chosen to be a little smaller. When everything is taken together,
we propose the value

Kplane � 1:7 �43�
to be a useful rough approximation in many two-dimensional cases.
A similar reasoning can be made in the axisymmetric case. On dimensional grounds we now

have

uc�D� � Kaxi�g2Qo�1=5�P=D*�1=5; �44�
where K axi is a new nondimensional constant. Comparing the experimental results for uc(D), as
given in Figs. 4±12, with the formula (44), we ®nd that it is possible to approximate

Kaxi ' 0:8; DI10m
0:7; D ' 50m

:

�
�45�

Thus also in the axisymmetric case, we obtain in this way a useful rough representation of the
dependence of uc (D) upon the external parameters Q o and D.
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